/) /)
ପ(˶•-•˶)ଓ ♡
/づ づ
[tex]\color{#06506B}{\huge\bf{ {}^{625} log \: \sqrt{ {25}^{2x - 4} } = \frac{1}{2} }}[/tex]
[tex]\color{#06506B}{\huge\bf{x = ....?}}[/tex]
[tex] \sf log_{625}( \sqrt{ {25}^{2x - 4} } ) = \frac{1}{2} [/tex]
[tex] \sf log_{ {5}^{4} }( \sqrt{ {25}^{2x - 4} } ) = \frac{1}{2} [/tex]
[tex] \sf \frac{1}{4} log_{5}({ \sqrt{{25}^{2x - 4} } }^{ \frac{1}{2}} ) = \frac{1}{2} [/tex]
[tex] \sf \frac{1}{4} \times \frac{1}{2} log_{5}(5 {}^{2(2x - 4)} ) = \frac{1}{2} [/tex]
[tex] \sf \frac{1}{4} \times \frac{1}{2} (2(2x - 4)) log_{5}(5) = \frac{1}{2} [/tex]
[tex] \sf \frac{1}{4} \times \frac{1}{2} (2(2x - 4)) \times 1 = \frac{1}{2} [/tex]
[tex] \sf \frac{1}{4} \times \frac{1}{2} (2 \times 2x + 2 \times ( - 4)) = \frac{1}{2} [/tex]
[tex] \sf \frac{x - 2}{2} = \frac{1}{2} [/tex]
[tex] \sf x - 2 = 1[/tex]
[tex] \sf x = 1 + 2[/tex]
[tex] \sf x = 3[/tex]
[answer.2.content]